Surven of cludia.

PROFESSIONAL PAPER-No. 11.

OBSERVATIONS OF ATMOSPHERIC REFRACTION

1905-09

BY
H. G. SHAW,

SURVEY OF INDIA.

PUBLISHED BY ORDER OF THE GOVERNMENT OF INDIA.

四ebra 畳un:
PRINTED AT THE OFFICE OF THE TRIGONOMETRICAL SURVEY OF INDIA,
1911.

Price One Rupee or One Shilling and Six Pence.

GMITHSONIAN DEPOSTT

Iudia. Sutben of grdiadt.

PROFESSIONAL PAPER-No. 11.

OBSERVATIONS OF ATMOSPHERIC REFRACTION

1905-09

BY
H. G. SHAW, survey of india.

PUBLISHED BY ORDER OF THE GOVERNMENT OF INDIA.

PRINTED AT THE OFFICE OF THE TRIGONOMETRICAL SORVEY OF INDIA.
1911.

Price One Rupee or One Shiling and Six Pence.

Observations of Atmospheric Refraction

1905-09
by
H. G. SHAW,

Survey of India.

1. These observations were undertaken in order to investigate the laws of atmospheric refraction. My programme was to determine:-
(a) The refraction co-efficient both towards the plains and towards the snows.
(b) The refraction co-efficient in the case of a great depression like the angle from Mussooree to Dehra Dun.
(c) The hourly variation in refraction.
(d) The seasonal variation in refraction between October and May.

My observations have already been discussed by Colonel Burrard in the preface to Synoptical Volume XXXV (North-East Longitudinal Series) and in appendices 5 and 8 of G.'I. S. Professional Volume No. XIX (Levelling of Precision in India, 1858-1909). In Synoptical Volume XXXV the observations were used to determine the most probable values of heights of snow-peaks. In Professional Volume XIX my observed angles were placed on record for the information of future observers. In this paper I am deducing and classifying the several values of refraction co-efficients obtained, and in some cases also the difference of heights deduced trigonometrically and from spirit-levelling.

If $\mathbf{C}=$ the arc contained between the normals at the stations in seconds

$$
\begin{aligned}
& D_{\mathrm{a}}=\text { depression of } B \text { from } A \text { in seconds } \\
& E_{b}=\text { Elevation of } A \text { from } B
\end{aligned}
$$

then omitting minor corrections such as those for height of instrument and of signal

$$
\text { the co-efficient of refraction }=\frac{1}{2}\left\{\frac{C-\left(D_{\mathrm{a}}-\mathbf{E}_{\mathrm{b}}\right)}{\mathrm{C}}\right\} .
$$

When reciprocal angles have been observed the difference of height between stations is h where

$$
h=c^{\prime} \sin \frac{D_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}}{2} \sec \mathrm{E}_{\mathrm{b}} .
$$

If only one angle e.g., E_{a} has been observed the other D_{b} is equal to $c+E_{a}-2 r$, where $\mathbf{r}=\mathbf{K c} \mathbf{c}^{\prime \prime}, \mathrm{K}$ being the co-efficient of refraction.
2. I observed from five stations, three of which were specially built for this work.
(i). Mussooree (Shaw's Station), on the Lesser Himalayan range, height 6929.9* feet.

It is 25 feet east, and $17 \frac{1}{2}$ feet south or 30 feet S.E. of Mussooree Dome Observatory Station (Evelyn Hall) (vide Synoptical Volume of the Great Arc Meridional Series-Section 24° to 30°, page $86^{*}-A$). It is a masonry pillar 3 feet in diameter and 1 foot 9 inches in height, upper surface being flush with ground level, with an annulus 4 inches in width. A slab bearing the inscription "Shaw's Refraction Station 1905-09" has been fixed flush with the upper surface of the pillar.
(ii). Deira Dun (Shaw's Station), at the foot of the Lesser Himalayan range, height $2234 \cdot 3^{*}$ feet.

It is 10 feet west and $21 \frac{1}{2}$ feet south of the Dehra Dun Latitude Station (near Haig Observatory) (vide G.T.S. Vol. XVIII page 59). It is 79 feet 8 inches east of the Dehra Dun Longitude Station (vide G. T. S. Vol. XV, Appendix page 5 and Vol. XVIII, page 59). It is a masonry pillar 3 feet in diameter and 2 feet 6 inches in height, the upper surface being flush with ground level, with an annulus 3 inches in width. A slab bearing the inscription "Shaw's Refraction Station 1905-09" has been fixed flush with the upper surface of the pillar.
(iii). Nojli (Shaw's Station), situated in the plains, height $886 \cdot 7^{*}$ feet.

It is 7 feet east and 19 feet south or 20 feet S.E. of Colouel Campbell's Latitude Station, 63 feet from S.E. corner and 68 feet from N.E. corner of Nojli Tower Station. It is a masonry pillar 3 feet in diameter and $2 \ddagger$ feet in height, the upper surface of which is flush with ground level, with G. 'T. S.
an annulus 3 inches in width. A stone 6 inches square with the letters O inscribed on it has been B.M.
embedded in the centre of the pillar, the upper surface of which is on a level with the top of the pillar.
(iv). Nojli Tower Station, upper mark, close to No. (iii), beight $937 \cdot 0^{*}$ feet.

It is a principal station of the Great Arc Meridional Series—Section 24° to 30° —and is situated about half a mile S. of the village of the same name and about 3 miles S.E. of Baliakheri Railway Station, O. and R. Railway.
(v). Nag Tiba Hill Station, on the range immediately beyond that on which Mussooree stands, height 9912 feet.

[^0]A circle and dot inscribed on the upper surface of a stone embedded centrally in a circular masonry pillar 40 inches in diameter and 2 feet in height. Vertically below this upper mark, 2 other stones similarly inscribed are embedded in the centre aud in the foundation of the pillar respectively. Around this pillar, a circular masonry ring has been built 1 foot thick and of the same height as the pillar leaving a concentric space 3 inches wide, and surrounding this a platform of earth and stones 14 feet square has been built. It is on the summit of the highest of three peaks locally known as Nag Tiba. The hill can be approached from Mussooree in 2 marches by several different paths, all of which are very steep in places. There is a site for good camping ground on the spur running north from the station, and water is found on the north side of the main ridge to the cast.

Two stations were purposely introduced at Nojli, one 50 feet higher then the other, so as o compare the effects of atmospheric refraction at ground level with those at an altitude of 50 feet above the ground.
3. The observing stations to the snow peaks were Mussooree, Nojli and Nag Tiba, and from these stations observations were taken periodically to the snow peaks of Bandarpunch, height 20720 feet, Srikanta height 20120 feet, Jaonli height 21760 feet and Kedarnath height 22770 feet. These heights are the ones deduced from the old observations and are in no way based on the observations under discussion.
4. The trigonometrical observations consisted of the following series :-

Observations of vertical angles.

First Series	. -	From Mussooree to Dehra Dun and vice versa-distance 9•454 miles.
Second Series		From Mussooree to Nojli (Shaw's) and vice versa-distance $45 \cdot 927$ miles.
Third Series		From Mussooree to Nojli T.S. and vice versa-distance 45.931 miles.
Fourth Series		From Mussooree to Nag Tiba and vice versa-distance $9 \cdot 886$ miles.
Fifth Series	\ldots	From Mussooree to the Himalayan peaks of Bandarpunch (distance $47 \cdot 129$ miles), Srikanta (distance 55.474 miles), Jaonli (distance $54 \cdot 062$ miles) and Kedarnath (distance $63 \cdot 759$ miles).
Sixth Scries	...	From Nojli (Shaw's) to the IIimalayau peaks of Bandarpunch (distance 92.923 miles), Srikanta (distance 99.800 miles), Jaonli (distance 96.961 miles) and Kedarnath (distance $104 \cdot 148$ miles).
Seventh Series	\ldots	From Nag Tiba to the Himalayan peaks of Bandarpunch (distance $37 \cdot 370$ miles), Srikanta (distance 46.495 miles), Jaonli (distance $45 \cdot 814$ miles) and Kedarnath (distance 56.438 miles).

5. Results of the First Series of Observations.

Reciprocal Observations between Mussooree and Dehra Dun.
Table A.-showing firstly the excess in feet of the trigonometrical determination of the height of Mussooree above Dehra Dun over the spirit-level determination, and secondly the co-efficient of refraction deduced from the trigonometrical observations.

	Trigonometrical minus levelled height					Deduced co-efficient of refraction				
	8.a. m.	$10 \mathrm{~m} . \mathrm{m}$.	Noon	2.3 p.m., time of minimum refraction	4-30 p.m	$8 \mathrm{a} . \mathrm{m}$.	$10 \mathrm{ar} . \mathrm{m}$.	Noon	2.3 p.m., time of minimum refraction	4-30 p.m.
Oct., Norr. 1905	$\begin{aligned} & \text { feet } \\ & 3.0 \end{aligned}$	$\begin{gathered} \text { feet } \\ 2 \cdot 8 \end{gathered}$	$\begin{aligned} & \text { feet } \\ & 2 \cdot 8 \end{aligned}$	$\begin{gathered} \text { feet } \\ 2 \cdot 8 \end{gathered}$	$\begin{aligned} & \text { feet } \\ & 3 \cdot 2 \end{aligned}$	0.079	0.065	0.059	0.057	0.066
$\begin{gathered} \text { Mar., April } \\ 1906 \end{gathered}$	4’3	$3 \cdot 2$	$2 \cdot 9$	3.0	3.2	0.076	0.066	0.057	0.056	0.068
Oct., Novr. 1906	$3 \cdot 2$	$2 \cdot 7$	$2 \cdot 6$	$2 \cdot 7$	$3 \cdot 2$	0.070	0.060	$0 \cdot 054$	0.055	0.058
$\begin{gathered} \text { Mar., April } \\ 1907 \\ \hline \end{gathered}$	$3 \cdot 7$	3.1	$3 \cdot 1$	3'1	$3 \cdot 3$	0.075	0.065	0.058	0.056	0.059
Oct., Novr. 1907	$3 \cdot 8$	2.9	$2 \cdot 8$	$2 \cdot 9$	3.0	0.071	0.061	0.053	0.052	0.056
Mar., April 1908	$3 \cdot 2$	2.8	$2 \cdot 6$	$2 \cdot 6$	3.0	0.076	0.063	0.057	0.057	0.060
October 1908	3•1	$2 \cdot 5$	2.4	$2 \cdot 5$	$2 \cdot 8$	0.082	0.071	0.067	0.066	0.072
$\begin{gathered} \text { Mar., A pril } \\ 1909 \end{gathered}$	$3 \cdot 8$	$2 \cdot 8$	$2 \cdot 9$	$2 \cdot 8$	$3 \cdot 0$	0.079	0.066	0.062	0.062	0.067
Mean	$3 \cdot 5$	2.9	$2 \cdot 8$	2.8	3•1	0.076	0.065	0.058	0.058	0.063

It will be seen from Table A that the autumn observations give practically the same results as the spring observations, and that the maximum diurnal difference is 0.7 of a foot in height and 0.018 in the refraction co-efficient.

The following extract has been taken from Colonel Burrard's Appendix to G. T. Survey Volume XIX.

One curious fact bronght to light by Mr. Shaw's observations between Dehra Dan and Mussooree is that the trigonometrical difference of height, determined from reciprocal vertical angles, is systematically larger then the spiritlevel value of the difference. The orthometric difference of height determined by spirit-levelling is $4690 \cdot 6$ feet ($=1431 \cdot 2$ metres) : the trigonometrical determination always exceeds $4698 \cdot 0$ feet ($=1431 \cdot 9$ metres).

Table showing excess in feet of the trigonometrical determination of the height of Mussooree above Dehra Dun over the spirt-level determination.

The mean excess of the trigonometrical determination is 3.0 feet ($=0.9$ metre).
I do not think that the difference between the trigonometrical and spirit-level valnes can be attributed to errors of observation. As the above table shows, trigonometrical observations have been carried ont for years at different times of day and daring different seasons, and have always given accordant results, whatever instrument has beeu employed. If any one is onwilling to accept the levelling resnlts, he should study page 342 , 359 and 395 of this volume, and he will realise how onjustifiable it woald be to attribate an error of even one foot to the levelling.

The dinnal variation of the difference is small, and seems to denote that the differeuce is not a phenomenon of refraction. Detailed calculations support this view, and show that refraction is not the primary canse. Let us, for instance, suppose that Mnssooree is raised by refraction, when viewed from Debra Dan, throngh x feet; and that Dehra Dan is raised by refraction, when riewed from Mussooree, throngh y feet. Then the discrepancy between the trigonometrical and spirit-level valaes will be $\frac{x-y}{2}$ feet. We have therefore to pat $\frac{x-y}{2}$ equal to 3 feet, and $x-y$ $=6$ feet ($=1 \cdot B$ metres).

Now let r_{1} be the co-efficient of refraction at Dehra Dan and r_{2} at Mussooree: then from Mr. Shaw's observations we have the mean refraction $=\frac{r_{1}+r_{2}}{2}=0.0$ ong. And we have to assame that the difference $\left(r_{1}-r_{2}\right)$ is sach, that Massooree is raised log refraction 6 feet higher when viewed from Dehra Dan, than Dehra Don is raised, when viewed from Mussoorec. We can then dednce

$$
\begin{aligned}
& r_{1}=0.081 \\
& r_{2}=0.031 .
\end{aligned}
$$

Bat these valnes are contrary to all experience; and in the face of numerons independent determinations of refraction we abonld not be justified in accepting such a large co-eflicient as 0.081 for Debra Dan or anch a small co-ellicient as 0.031 for Mussooree.

The effects of refraction upon the levelling between Dehra Dun and Mussooree may be neglected; in Appendis No. 4 Mr . Huntor has shown that the total correction for refraction to spirit-levelling between Dehra Dun and Mussooree is only -0.092 foot.

The discrepancy between the trigonometrical and spirit-level values of height cannot be attribated to onr employment of erroneous valaes of g in the formalm for deriving the orthometric corrections for spirit-level heights, (page 100). In Appendix No. 4 of this volame, Mr. Hunter has shown that if observed values of g, (corrected for height only), are used for tho deduction of the orthometric correction from the formalie of chapter VII, the observed value of the spirit-level height of Masgoorce above Dehra Dun will receive a correction of only -0.392 foot.

Great differences of opinion at present prevail amongat geologists and geodesista on the snbject of the Bongner term in the reduction of pendalom observations. Professor Saess has recently expressed distrnst of the results of pendulum observations, and of the theory of isostasy*. Mr. Tittmann and Mr. Hayford have recently questioned the correctness of our orographical corrections for pendalom observations, and have pat forward a theory of complete isostasy \dagger.

But I do not think that onr neglect of the Boagoer term in the dedaction of the orthometric correction for spirit-levelled heights (see page 101) can be the canse of the discrepancy between the trigonometrical and spirit-level determinations of the Himalayan difference of height. The following are the several values of gravity :-

	at Dehra Dan	at Massooree (Camel's Back)	difference (Debra Dan- Mussooree)
Observed values	$\begin{gathered} \text { cm. } \\ 979.063 \end{gathered}$	$\begin{gathered} c m . \\ 978 \cdot 793 \end{gathered}$	$\begin{aligned} & \mathrm{cm} . \\ &+\quad 0.270 \end{aligned}$
Observed valnes corrected for height only	979.273	979'442	- 0.169
Observed values corrected for height, and for mass (Bougner)	979'194	979'199	-0.005
Observed values corrected for height, and for mass (Boagner) and for orography	979'198	979*225	-0.027
Theoretical values from Helmert's formals ...	979.324	979*335	-0.011

It is difficult to see how any theory of isostatic compensation can so modify the adopted values of g, as to bring abont an additional correction of +3 feet to the spirit-levelled height of Massooree \ddagger. If observed values of gravity are used, withont any correction at all for height or mass, the correction to the spirit-levelled height will be less than +0.7 foot.

The only explanation that I can offer of the discrepancy of 3 feet between the trigonometrical and apirit-level valnes of the height of Massooree above Dehre Don is the following:-
(i.) The plamb-line is deflected at Dehra Dnn aboat $30^{\prime \prime}$ towards the north: the observed angle of elevation of Massooree from Dehra Dun is thas about 30" too smalls.
(ii.) The plamb-line is detlected at Mussooree also abont $30^{\prime \prime}$ towards the north; and the observed angle of depression of Debra Dan from Massooree is thas also $30^{\prime \prime}$ too small.
(iii.) Both the back and forward vertical angles being $30^{\prime \prime}$ too small, and the horizontal distance between Dehra Dun and Massooree being $\mathbf{5 \cdot 6}$ miles, the trigonometrical value of the difference of height has been given abont 7 feet too small.
(iv.) Hut the apirit-level valne of this difference of height is 3 feet smaller than the trigonometrical value, nad as the latter is 7 feet too small, the spirit-level value must be 10 feet too amall.
(v.) Calculations of trigonometrical beights are besed apon a spheroidal figare for the earth; the spiritlevelling follows the sarface of the geoid. The sarface of the geoid mast be, I think, 10 fect higher at Mnasooree above the apheroidal sarface than it is at Dehra Dun. This separation of the two sarfaces wonld affect the levelling to the extent of 10 feet.

[^1](vi,) If the deffection of the plamb-line is $30^{\prime \prime}$ both at Massooree and Dehra Don, it may be argacd that this represents the inclination of the geoidal to the spheroidal sarfaco, and in 9.5 miles this inclination woald only produce a separation of 7 feet. 'Ihis argument would be correct, if the deflection of the plomb-line continued to be $30^{\prime \prime}$ throughout the line from Dehra Dun to Mussooree. But at Rajpar, midway between Delra Dan and Massooree, the deffection of the plumb-line is $10^{\prime \prime}$ greater than at Dehra Dun or Mussooree. The surface of the geoid is therefore not rising at an oniform angle of $30^{\prime \prime}$ throughont the line. At the two extremities of the line it is inclined $30^{\prime \prime}$ to the spheroid; at the centre of the line its inclination exceeds $40^{\prime \prime}$."

* The adopted deflections of the plamb-line are those, which have been determined in the plane of the meridian. The line joining Debra Dan and Mussooree is some 6 degrees in azimuth enst of north. In the vertical plane, passing through Dehra Dun aud Mnssooree, the deflections are probably $2^{\prime \prime}$ greater at both places than in the meridional plane. The course moreover of the spirit-levelling does not follow the straight line, but zig-rags to the east and to the west of it. These considerations prevent us from claming any high degree of aconracy for our estimate of the departure of the geoidal from the spheroidal surface, bat they do not affect the general principles naderlying the explanation, See preface to Synoptical T'olume $X X X V, G, T$. Survey of India.

6. Results of the Second Series of Observations.

Reciprooal Observations between Mussooree and Nojli (Shaw's).

Table B.-showing firstly the excess in feet of the trigonometrical determination of the height of Mussooree above Nojli (Shaw's Station) over the spirit-level determination, and secondly the co-efficient of refraction deduced from the trigonometrical observations.

	Trigonometrioal minus levelled height					Deduced co-efficient of refraction				
	$8 \mathrm{a} . \mathrm{m}$.	$10 \mathrm{n} . \mathrm{m}$.	Noon	$2 \cdot 3$ p.m., time of minimum refraction	4.30 p.m.	$8 \mathrm{ar} . \mathrm{m}$,	10 e. m.	Noon	2.3 p.m., time of minimum refruction	t-30 p.m.
Novr., Dec. 1905	$\begin{aligned} & \text { feet } \\ & 74 \cdot 7 \end{aligned}$	$\begin{aligned} & \text { feet } \\ & 27 \cdot 7 \end{aligned}$	$\begin{aligned} & \text { feet } \\ & 6.9 \end{aligned}$	$\begin{array}{r} \text { feet } \\ 4.6 \end{array}$		O.103	0.084	0.074	0.070	$\left\lvert\, \begin{gathered} \text { No ob. } \\ \text { servation } \end{gathered}\right.$
$\begin{aligned} & \text { Mar., April } \\ & 1906 \end{aligned}$	41•8	21.9	13'1	$9 \cdot 8$	17.5	$0 \cdot 087$	0.073	$0 \cdot 068$	0.067	0.070
Oct., Dec. 1906	$66 \cdot 4$	$15^{\prime} 1$	$1 \cdot 9$	$2 \cdot 3$	$9 \cdot 2$	-0.098	$0 \cdot 081$	0.072	0.069	0.072
Mar., April 1907	$36 \cdot 6$	$8 \cdot 5$	5.1	$6 \cdot 9$	15.6	c.087	$0 \cdot 075$	$0 \cdot 068$	0.067	0.070
$\begin{gathered} \text { Mar., April } \\ 1909 \end{gathered}$	$48 \cdot 4$	$20 \cdot 4$	4'I	3.5	7'7	0.089	0.075	0.068	0.066	0.058
Mean	53.6	$18 \cdot 7$	$6 \cdot 2$	5*4	12.5	$0 \cdot 093$	0.078	0.070	0.068	0.070

In this table we find that the diurnal range both in the height and in the refraction coefficient is great, that it is greater in autumn than in spring, that it rapidly changes between $8 \mathrm{a} . \mathrm{m}$. and noon, and that the best time of observation is when the refraction is at minimum (about 2 p.m. to 3 p.m.). The refraction is high in the mornings and goes on decreasing to a minimum at 2 p.m., and then starts rising again between 3 and 4 p.m.

We may also learn from these results that reciprocal angles should not only be taken at the same time of day, but at the same time of year, otherwise if an observer takes the forward vertical angles at the commencement of the field season, and his reciprocals at the end of the scason, some five or six montbs later, he will get quite a different height from what would result if all the angles were observed at nearly the same season.

It will also be noticed that in some instances, the refraotion co-efficient has not changed, yet the height has done so, e.g., 2-3 p.m., observations for March-April 1906, and 1907, and noon observations for March-April 1906, 1907 and 1909. The following will illustrate my meaning: -

If both D_{s} and \mathbf{E}_{b} increase or decrease numerically by equal amounts, K which depends on $D_{s}-E_{b}$ will not be affected, but h which depends on $D_{a}+E_{b}$ will change,

$$
\begin{aligned}
& \text { e.g., Spring 1906, noon } \frac{\mathrm{D}_{\mathrm{n}}+\mathrm{E}_{\mathrm{b}}}{2}=1^{\circ} 25^{\prime} 49^{\prime \prime} \text { and } \frac{\mathrm{D}_{\mathrm{a}}-\mathrm{E}_{\mathrm{b}}}{2}=0^{\circ} 17^{\prime} 16^{\prime \prime} \\
& \\
& \text { Spring 1907, noon } \frac{\mathrm{D}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}}{2}=1^{\circ} 25^{\prime} 42^{\prime \prime} \text { and } \frac{\mathrm{D}_{\mathrm{a}}-\mathrm{E}_{\mathrm{b}}}{2}=0^{\circ} 17^{\prime} 16^{\prime \prime}
\end{aligned}
$$

The explanation is that owing probably to atmospheric changes, refraction was not the same at both places for these times and periods. In the formulæ for the computation of trigonometrical heights, the refraction at both places is assumed to be equal, but practically this assumption is often faulty. In the introduction to Synoptical Volume II, Great Arc Series 1874, Mr. W. H. Cole, M.A., writes :-
"The triangalation connecting the two base-lines was completed by 8 th June 1837 as to the horizontal angles. Bat "some of the vertical angles remained to be observed from Aring northward; they were measured by Lientenant Wangh
" Lieutenant Jones, Mr. Logan and Mr. James, and the instruments sapplied then for the parpose had vertical circles " 12 inches to 18 inches in diameter. The observations were made simultancously with the expectation that they would "be equally affected by refraction, bat it was soon fonad that the laws of terrestrial refraction were as yet far from le" ing discovered. The anbtended angle, which is half the difference of a pair of reciprocal vertical angles, should, if the "refraction at both stations were the same, remain a practically constant quantity, however mach the refraction may "vary. Far from this being the case bowever, the snbtended angles in many instauces were frequently fonnd to vary "between lincits far exceeding those of the errors of observations, thas showing that the reciprocal vertical angles were rot "equally affected by refraction thongh observed simultaneonsly."

Another fact, which has also been noted by the old observers, is that refraction varies at times for the same hour on different days; if we examine the daily results of the observations at the time of minimum refraction to the snow peaks during the period under review, either during autumn or spring, we find this to be the case, the range in some instances being as much as 23 feet.

The variations of refraction are probably mainly due to the varying density of the atmosphere, and to the layer of heated air next the earth.

Table C.-showing firstly the differences in excess in feet of the trigonometrical determination of the height of Mussooree above Nojli (Shaw's Station) over the spirit-level determination between the autum's and spring at time of minimum refraction (2 to $3 \mathrm{p} . \mathrm{m}$.) , and secondly the co-efficient of refraction deduced from the trigonometrical observations.

Trigonometrical minus levelled height					Deduced co-eflicient of refractiou				
Year	Autumn October December	Apring March April	Autumn minus. Spring	Mean of Autumn and Bpring	Year	Autumn October December	Spring Mnroh April	Autumn minuts Bpring	$\left\lvert\, \begin{gathered} \text { Menn of } \\ \text { Autumin } \\ \text { and spring } \end{gathered}\right.$
1905-06	$\begin{aligned} & \text { feet } \\ & 4.6 \end{aligned}$	$\begin{aligned} & \text { feet } \\ & 9 \cdot 8 \end{aligned}$	$\begin{gathered} \text { feet } \\ -\quad 5.2 \end{gathered}$	$\begin{aligned} & \text { feet } \\ & 7.2 \end{aligned}$	1905-06	0.070	0.067	+0.003	0.069
1906-07	$2 \cdot 3$	$6 \cdot 9$	-4.6	$4 \cdot 6$	1906-07	0.069	0.067	+0.002	0.068
Mean	3.5	$8 \cdot 4$	- 4'9	5'9	Mean	0.070	0.067	+0.003	0.069

This table shows us that refraction and the difference in height vary between autumn and spring, and that the values obtained in autumn are nearer the spirit-level values than those obtained in spring, and that the mean excess of the trigonometrical value over the spirit-level value is 6 feet.

7. Results of the Third Series of Observations.

Reciprocal Observations between Mussooree and Nojli T.S. upper mark.

Table D.-showing firstly the excess in feet of the trigonometrical determination of the height of Mussooree above Nojli T.S. (upper mark) over the spirit-level determination, and secondly the co-efficient of refraction deduced from the trigonometrical observations.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{5}{|c|}{Trigonomelrical minus levelled height} \& \multicolumn{5}{|c|}{Deduced co-efficient of refraction}

\hline \& $8 \mathrm{a} . \mathrm{m}$. \& 10 sm. \& Noon \& 2.3 p.m., time of ininimum refraction \& 4-30 p.m \& $8 \mathrm{~g} . \mathrm{m}$. \& $10 \mathrm{a} . \mathrm{m}$. \& Noon \& 2-3 p.m., time of minimum refraction \& 4.30 p.m.

\hline $$
\begin{gathered}
\text { Mar., April } \\
1906 \\
\hline
\end{gathered}
$$ \& \[
$$
\begin{aligned}
& \text { feet } \\
& 39^{`} 3
\end{aligned}
$$

\] \& | feet |
| :--- |
| 20 I | \& | feet |
| :--- |
| $11 \cdot 8$ | \& | feet |
| :--- |
| II•8 | \& | feet |
| :--- |
| 12.0 | \& 0.085 \& 0.072 \& 0.068 \& $0 \cdot 067$ \& 0.067

\hline $$
\begin{gathered}
\text { Mar, April } \\
1907
\end{gathered}
$$ \& $42 \cdot 9$ \& 16.9 \& $9 * 5$ \& 10.5 \& 1J*3 \& 0.087 \& 0.077 \& 0.069 \& 0.068 \& 0.068

\hline $$
\begin{gathered}
\text { Mar., A pril } \\
1909
\end{gathered}
$$ \& $55^{\prime 2}$ \& 23.9 \& 10.4 \& 7'7 \& $9 \cdot 8$ \& 0.093 \& $0 \cdot 077$ \& 0.070 \& 0.069 \& $0 \cdot 069$

\hline Mean \& $45 \cdot 8$ \& 20.3 \& $10 \cdot 6$ \& $10 \cdot 0$ \& 11*0 \& 0.088 \& 0.075 \& 0.069 \& 0.068 \& 0.068

\hline
\end{tabular}

If we compare the results of the above with those corresponding to the same times and periods in Table B, we see that the refraction co-efficient is practically identical, but that the excess of the trigonometrical determination over the spirit-level value is greater, notwithstanding that this station is 50 feet higher than the ground level station. It was expected that the: results would have been better at the higher than at the lower station.

8. Results of the Fourth Series of Observations.

Reciprocal Observations between Mussooree and Nag Tiba h.s.

Table E.-showing firstly the trigonometrical determination of the height of Nag Tiba h. s. above Mussooree, and secondly the co-efficient of refraction deduced from the trigonometrical observations.

	Trigonomatrioal height above Mussoores					Deduced co-eflicient of refraction				
	$8 \mathrm{a} . \mathrm{m}$.	10 ar m.	Noon	2-3 p.m., time of minimum refraction	4.30 p.m	$8 \mathrm{a} . \mathrm{m}$.	$10 \mathrm{~m} . \mathrm{m}$,	Noon	2.3 p.m., time of minimum refraction	4.30 p.m.
$\begin{gathered} \text { April, May } \\ 1906 \end{gathered}$	$\left\|\begin{array}{c} \text { jeet } \\ 298 \mathrm{I} \cdot \mathbf{1} \end{array}\right\|$	$\begin{gathered} \text { feet } \\ 298 \mathrm{I} \cdot 3 \end{gathered}$	feet 2981•5	$\underset{298 \mathrm{I} \cdot 0}{\substack{\text { feet }}}$	$\left\|\begin{array}{c} f e e t \\ 298 \mathrm{I} \cdot 3 \end{array}\right\|$	0.050	$0 \cdot 049$	0.049	$0 \cdot 045$	0.048
$\begin{gathered} \text { April, May } \\ 1907 \end{gathered}$	2981.3	2981 - 3	2981.0	298I 2	$2981 \cdot 4$	$0 \cdot 054$	0.051	$0 \cdot 052$	0.051	0.053
March, May 1908	298I•I	298.1 3	2981-6	2981.4	2981.9	0.053	0.052	0.052	0.051	0.054
October 19() 8	2981.3	2980.9	2981.0	$2980 \cdot 8$	2980.6	0.080	0.074	0.072	0.073	0.077
$\begin{gathered} \text { April, May } \\ 1909 \end{gathered}$	2981 1	2980'7	2980.9	2981'1	2981'7	$0 \cdot 057$	0.053	0.053	0.052	0.058
Mean	2981 2	2981.1	2981.2	2981.1	2981.4	0.059	$0 \cdot 056$	$0 \cdot 056$	$0 \cdot 054$	0.058

The resulting differences in height are very accordant throughout this period, in fact if we look at the mean results, there is practically no diurnal variation; the refraction varies somewhat, but the heights are not affected by these changes. There was a sudden jump in the refraction co-efficient for the observations taken in October 1908, which is unaccountable.

Looking at the results of this table, we may assume that when the rays of light between two stations pass at a considerable elevation above the surface of the ground, reciprocal observations may be taken at all hours of the day between $8 \mathrm{a} . \mathrm{m}$ to $4-30 \mathrm{p}$. m., subject to a distance limit of say 15 miles. In this case the distance between the two stations is 10 miles. As was mentioned before, Mussooree and Nag Tiba are hill stations, the height of the former is 6930 feet and of the latter 9912 feet. For want of data we cannot say whether this assumption would hold good for elevated plateaux or plains of 7000 feet and upwards; we may find in future that an elevated plain of 7000 feet offers the same difficulties as a low level plain and that the absence of variatiou between Mussooree and Nag Tiba is due not so much to their elevation as to their prramidal form.
9. Table F.-showing deduced heights from observations taken at Mussooree at time of minimum refraction (2 p . m. to $3 \mathrm{p} . \mathrm{m}$.)

Station obsarved	Distance	Refraction co-eflicient	Year	Antamn	Spring	Antamn minus Spring
Nojli (Shaw's)	miles$45 \cdot 927$	0.069		feet	feet	feet
			1905-06	$886 \cdot 9$	873.4	$+13.5$
			1906-07	$886 \cdot 6$	$875 \cdot 3$	+11.3
			1908-09	898•3	$877 \cdot 7$	$+20.6$
			Mean	890.6	875.5	$+15 \cdot 1$
Nojli T. S. upper mark	45*931	0.069	1906-07	937×7	923.3	+14.4
			1907-08	$943 \cdot 5$	$932 \cdot 3$	+11.2
			1908-09	$949 * 3$	928.2	+21. 1
			Mean	943.5	927.9	+15.6
Bandarpunch Snow Peak	47'129	0.063	1905-06	20731	20713	+ 18
			1906-07	20724	20713	+11
			1907-08	20729	20715	+14
			1908-09	20740	20721	+19
			Mean	20731	20716	+16

It is interesting to note from the above table that the change from autumn to spring in the height of the plain station and also the snow peak computed from Mussooree is of the same sign and of practically the same amount. Since Mussooree, the station of observation, lies nearly midway betweeu Bandarpunch and Nojli, the equality of the change seems to show that this seasonal variation is due entirely to change in refraction: and that the height of the snow peak has not been changed appreciably by anow fall.

Table G.-showing the variation in difference of height between $8 \mathrm{a} . \mathrm{m}$. and $2 \mathrm{p} . \mathrm{m}$. to 3 p.m. (time of minimum refraction) from observations taken at Mussooree.

Moath and yoar of observation	Obeerred Station	$\left\|\begin{array}{c} \text { Co-efficient } \\ \text { refraction } \end{array}\right\|$	Deduced difference of height Observed station minus Mussooree		Difference in lieight deduced from 8 a.m. and 2 to 3 pm . observations
			$8 \mathrm{a} . \mathrm{m}$.	$\begin{aligned} & 2 \text { p. min. } \\ & \text { to. } \\ & \text { to p. m. }^{2} . \end{aligned}$	
November \ldots 1905 April \ldots 1906 November \ldots 1996 April \ldots 1907 Octr. and Novr. 1907 March and April 1908 October \ldots 1908 April \ldots 1909	Bandarpunch	0.063	$\begin{gathered} \text { feet } \\ +13799 \end{gathered}$	$\begin{gathered} \quad \text { feet } \\ +13799 \end{gathered}$	
			13789	13783	$+6$
			13797	13793	+ 4
			13792	13782	+10
			13805	13799	$+6$
			13803	13786	+17
			13816	13^{808}	$+8$
			13798	13791	+ 7
		Mean	$+13^{800}$	+ 13793	$+7$
November \ldots 1905 April \ldots 1906 November \ldots 1906 April \ldots 1907 Octr. and Novr. 1907 March and April 1908 October \ldots 1908 April \ldots 1909	Srikanta	0.063	+13195	+13188	$+7$
			13176	13160	$+16$
			13193	13181	$+12$
			13192	13173	+19
			13206	13194	+12
			13192	13176	$+16$
			13220	13206	+14
			13175	13179	$+16$
		Mean	$+13196$	$+13182$	+14
 November \ldots 1905 April \ldots 1906 November \ldots 1906 April \ldots 1907 Octr. and Novr. 1907 March and April 1908 October \ldots. 1908 April \ldots. 1909	Jaonli	0.063	+14807	$+14813$	-6^{*}
			14787	14785	+ 2
			14807	14800	$+7$
			14808	14797	+ 11
			14817	14805	$+12$
			14816	14795	+2I
			14840	14827	+13
			14820	14800	+20
			$+14813$	+14803	+10

*The refraction was leas at 8 a,m. than at time of "minimum refraction."

Table G.—showing the variation in difference of height between 8 a.m. and 2 p.m. to 3 p.m. (time of minimum refraction) from observations taken at Mussooree.-(Continued).

Month and year of observation	Observed Atation	$\begin{aligned} & \text { Co.efficient } \\ & \text { refraction } \end{aligned}$	Deduced difference of height Observed station minus Mussooree		Difference in height deduced from 8 a.m. and 2 to 3 p.m. observations
			8 a.m.	$\begin{aligned} & 2 \text { p. m. } \\ & \text { to. } \\ & \mathrm{t}_{\mathrm{p} . \mathrm{m} .} \end{aligned}$	
November ... 1905	Kedarnath	0.063	$\begin{gathered} \text { feet } \\ +15919 \end{gathered}$	$\begin{gathered} \text { feet } \\ +1593 \mathrm{I} \end{gathered}$	$\begin{aligned} & \text { feet } \\ & -12^{*} \end{aligned}$
November ... 1906			15925	J5916	+9
October and Novr. 1907			15941	15926	+ 15
March ... 1908			15938	15915	+23
October ... 1908			15964	15947	$+17$
April $\quad . .1909$			15938	15913	+25
		Mean	+15938	+15925	+13
November ... 1905	Nojli (Shaw's)	0.069	$-6022 \cdot 9$	$-6043 \cdot 0$	$+20.1$
April ... 1906			$6033 \cdot 8$	$6056 \cdot 5$	$+22 \cdot 7$
November ... 1906			$6028 \cdot 0$	$6043 \cdot 3$	+15.3
April ... 1907			$6017 \cdot 2$	$6053 \cdot 1$	+35.9
March and April 1908			$6025 \cdot 2$	$6054 \cdot 2$	$+29.0$
October $\quad . .1908$			6001 I	$6031 \cdot 9$	$+30 \cdot 8$
April ... 1909			$6032 \cdot 0$	$6052 \cdot 2$	$+20 \cdot 2$
		Mean	-6022.9	-6047%	$+24.8$
April ... 1906	Nojli T. S. upper mark	0.069	$-5984 \cdot 9$	$-6008 \cdot 8$	+23.9
November ... 1906			5976.1	$5992 \cdot 2$	$+16 \cdot 1$
April ... 1907			$5978 \cdot 6$	6006.7	$+28 \cdot 1$
November ... 1907			$5943 \cdot 6$	$5986 \cdot 4$	$+42.8$
March and April 1908			5959.9	$5997 \cdot 6$	$+27.7$
October ... 1908			5952.0	$5980 \cdot 8$	$+28.8$
April ... 1909			$59^{80} 3$	$6001 \cdot 7$	$+21.4$
			$-5969 \cdot 3$	$-5996 \cdot 3$	$+27.0$

*The refraction was lens at 8 a.m. than at time of "minimum refraction."

Table H.-showing the variation in difference of height between 8 a.m. and 2 p.m. to 3 p.m. (time of minimum refraction) from observations taken at Nojli (Shaw's Station).

Month and year of observation			Observed atation	$\left\|\begin{array}{c} \text { Co-efficient } \\ \text { refiaction } \end{array}\right\|$	Deduced difference of height Observed station minus Nojli		Difference in beight deduced from $8 \mathrm{a} . \mathrm{m}$. and 2 to 3 p.m. observations	
			$8 \mathrm{a}, \mathrm{m}$.		$\begin{aligned} & 2 \text { p. m. m. } \\ & \text { to. } \\ & 3 \text { p. m. } \end{aligned}$			
December		1905		Mussooree (Shaw's)	0.072	$\begin{gathered} f e e t \\ +6205.6 \end{gathered}$	$\begin{gathered} f e e t \\ +6043 \cdot 9 \end{gathered}$	feet $+161 \cdot 7$
March	...	1906			6127.4	$6035 \cdot 8$	+ 91.6	
December	...	1906			6185.6	$6039 \cdot 6$	+146.0	
March		1907			6123.7	6036.6	+ 87.1	
January	...	1909			$6190 \cdot 2$	$6064 \cdot 9$	+125.3	
March		1909	Mean		6141.6	$6032 \cdot 4$	+ 109.2	
					+6162.4	+6042.2	+120.2	
December March December January	...$\ldots$$\ldots$$\ldots$	$\begin{aligned} & 1905 \\ & 1906 \\ & 1906 \\ & 1909 \end{aligned}$	Bandarpunch	0.069	+20124	+ 19860	+264	
					19958	19810	+148	
					20124	19881	+243	
					20098	19912	+186	
				Mean	$+20076$	+19866	+210	
March	\ldots	1907	Srikanta	$0 \cdot 069$	+19420	+19320	$+100$	
January		1909			19535	19297	$+23^{8}$	
				Mean	+ 19478	+19309	+169	
March	...	1906	Jaonli	0.069	$+20962$	+20816	+ 146	
January	...	1909	Kedarnath	0.069	+22286	+22059	+227	

Tables G and H show the variation in height of the same station deduced from observations taken at $8 \mathrm{a} . \mathrm{m}$. and at the time of minimum refraction respectively, and the following conclusions may be drawn from them :-
(a) That the $8 \mathrm{a} . \mathrm{m}$. heights are generally higher than the minimum time heights.
(b) That the excess of the $8 \mathrm{a} . \mathrm{m}$. over the minimum time beights is considerably greater when observations are taken from a hill station to a station in the plains than to another hill station, although the two stations observed may be practically at the same distance from the station of observation.
(c) That the variation is very much greater and rapidly increases with the distance, when the station of observation is in the plains.
9. The results af the fifth, sixth and seventh series of observations have already been discussed in the preface to the G. T. Survey Synoptical Volume XXXV, pages ix to xiv.
10. The accompanying diagram illustrates how very great the differences are in the angles of elevation between morning and afternoon when observations are taken from a station in the plains to a hill station, and how very small the changes are between the morning and afternoon angles when observations are taken from one hill station to another.

Nojli is in the plains, Mussooree is on the outer Himalayas and Bandarpunch is a snow peak of the main range (Kumaun Himalayas).

Observations at Mussooree of the angle of elevation to Bandarpunch

The chain dotted lines show the variation in the angle from day to day when observed at the same time of day.
The continuous lines show the variation observed between morning and afternoon.

PROFESSIONAL PAPER-No. 11.

OBSERVATIONS OF ATMOSPHERIC REFRACTION

1905-09

BY
H. G. SHAW, SURVEY OF INDIA.

PUBLISHED BY ORDER OF THE GOVERNMENT OF INDIA.

PRINTED AT THE OFFICE OF THE TRIGONOMETEICAL SURVEY OF INDIA,
1911.

[^0]: - Spirit-levelled height.

[^1]: - Fide, The face of the Earth, Volame IV, page 610, Sollas's tradslation of Das Antlitz der Erde.
 \dagger Report Cagat and Geodetic Swreey, U. B. A.. 1909. Report International Geodetic Conference, Budapest, 1906. Report International Geodetic Conference, London, 1909.
 \ddagger The monatain line of levelling from Dehra Don to Massooree is the only line in India, mpon which the neglect of the Boaguer term might affect the orthometric values of height in the first place of decimala of a foot.
 § For deflections see Philosophical Transactions of the Boyal Society, Vol. 205, 1905, p, 308,

